教室業績集
Department of Physiology II
 

~2017~

Watabe T, Xu M, Watanabe M, Nabekura J, Higuchi T, Hori K, Sato MP, Nin F, Hibino H, Ogawa K, Masuda M, Tanaka KF.

Time-controllable Nkcc1 knockdown replicates reversible hearing loss in postnatal mice.

Scientific Reports, (2017), 7, Article number:13605. Scientific Reports


Sato MP, Higuchi T, Nin F, Ogata G, Sawamura S, Yoshida T, Ota T, Hori K, Komune S, Uetsuka S, Choi S, Masuda M, Watabe T, Kanzaki S, Ogawa K, Inohara H, Sakamoto S, Takebayashi H,  Doi K, Tanaka KF, Hibino H.

Hearing loss controlled by optogenetic stimulation of nonexcitable nonglial cells in the cochlea of the inner ear.

Frontiers in Molecular Neuroscience, (2017), 10(300): 1-16.  Frontiers in Molecular Neuroscience


Ogata G, Ishii Y, Asai K, Sano Y, Nin F, Yoshida T, Higuchi T, Sawamura S, Ota T, Hori K, Maeda K, Komune S, Doi K, Takai M, Findlay I, Kusuhara H, Einaga Y, Hibino H.

A microsensing system for the in vivo real-time detection of local drug kinetics.

Nature Biomedical Engineering, (2017), 1: 654-666. Nature Biomedical Engineering, Behind the paper, News & Views


Nin F, Yoshida T, Murakami S, Ogata G, Uetsuka S, Choi S, Doi K, Sawamura S, Inohara H, Komune S, Kurachi Y, Hibino H.

Computer modeling defines the system driving a constant current crucial for homeostasis in the mammalian cochlea by integrating unique ion transports.

npj Systems Biology and Applications, (2017), 3, Article number:24. npj Systems Biology and Applications.


Yoshida T, Sawamura S, Ota T, Higuchi T, Ogata G, Hori K, Nakagawa T, Doi K, Sato MP, Nonomura Y, Horii A, Takahashi S, Komune S, Nin F, Hibino H.

Fibrocytes in the cochlea of the mammalian inner ear: their molecular architecture, physiological properties, and pathological relevance.

Medical Research Archives, (2017), 5(6): 1-16. Medical Research Archives.


Hibino H, Takai M, Noguchi H, Sawamura S, Takahashi Y, Sakai H, Shiku H.

An approach to the research on ion and water properties in the interphase between the plasma membrane and bulk extracellular solution.

Journal of Physiological Sciences, (2017), 67(4): 439-445. Pubmed


Choi S, Sato K, Ota T, Nin F, Muramatsu S, Hibino H.

Multifrequency swept optical coherence tomographic vibrometry in biological tissues.

Biomedical Optics Express, (2017), 8(2): 608-621. Biomedical Optics Express


~2016~

Nin F, Yoshida T, Sawamura S, Ogata G, Ota T, Higuchi T, Murakami S, Doi K, Kurachi Y, Hibino H.

The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance.

Pflugers Archiv - European Journal of Physiology, (2016), 468(10): 1637-1649. Pubmed


Yoshida T, Nin F, Murakami S, Ogata G, Uetsuka S, Choi S, Nakagawa T, Inohara H, Komune S, Kurachi Y, Hibino H.

The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.

Pflugers Archiv - European Journal of Physiology, (2016), 468(9): 1609-1619. Pubmed

*2017/03/22 Nin F, Yoshida T, Hibino H. ‘The positive resting membrane potential of non-excitable fibrocytes in the mammalian cochlea.’

上記タイトルにてAtlas of Scienceに掲載。Atlas of Science


Miyasaka Y, Suzuki S, Yoshimoto S, Shitara H, Ohshiba Y, Okakura K, Seki Y, Tokano H, Kitamura K, Takada T, Shiroishi T, Hibino H, Kominami R, Yonekawa H, Kikkawa Y.

Heterozygous mutation of Ush1g/Sans in mice causes early-onset hearing loss, which is recovered by reconstituting the strain-specific mutation in Cdh23.

Human Molecular Genetics, (2016), 25(10): 2045-2059. Pubmed


~2015~

Choi S, Maruyama Y, Suzuki T, Nin F, Hibino H, Sasaki O.

Wide-field heterodyne detection method for two-dimensional surface vibration measurement.

Optics Communications, (2015), 356: 343-349. Optics Communications


Choi S, Watanabe T, Suzuki T, Nin F, Hibino H, Sasaki O.

Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues.

Optics Express, (2015), 23(16): 21078-21089.  Optics Express


Uetsuka S*, Ogata G*, Nagamori S*, Isozumi N, Nin F, Yoshida T, Komune S, Kitahara T, Kikkawa Y, Inohara H, Kanai Y, Hibino H.

Molecular architecture of the stria vascularis membrane transport system, which is essential for physiological function of the mammalian cochlea.

European Journal of Neuroscience, (2015), 42: 1984-2002. [*: equal contributors] Pubmed

*2016/07/18 World Biomedical Frontiersに掲載。World Biomedical Frontiers


Yoshida T, Nin F, Ogata G, Uetsuka S, Kitahara T, Inohara H, Akazawa K, Komune S, Kurachi Y, Hibino H.

NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K+-transport that controls the electrochemical properties in

the mammalian cochlea.

Pflugers Archiv - European Journal of Physiology, (2015), 467(7): 1577-1589. Pubmed


Fujita A, Inanobe A, Hibino H, Nielsen S, Ottersen OP, Kurachi Y. 

Clustering of Kir4.1 at specialized compartments of the lateral membrane in ependymal cells of rat brain. 

Cell and Tissue Research, (2015), 359(2): 627-634. Pubmed


~2014~

Yamaguchi S, Tanimoto A, Otsuguro K, Hibino H, Ito S.

Negatively-charged amino acids near and in transient receptor potential (TRP) domain of TRPM4 are one determinant of its Ca2+ sensitivity.

Journal of Biological Chemistry, (2014), 289(51): 35265-35282. Pubmed


~2013~

Adachi N, Yoshida T, Nin F, Ogata G, Yamaguchi S, Suzuki T, Komune S, Hisa Y, Hibino H#, Kurachi Y#.

The mechanism underlying maintenance of the endocochlear potential by the K+ -transport system in the fibrocytes of the inner ear.

Journal of Physiology (London), (2013), 591(18): 4459-4472. [#: equal corresponding authors] Pubmed


~2012~

Nin F, Reichenbach T, Fisher J, Hudspeth AJ.

Contribution of active hair bundle motility to nonlinear amplification in the mammalian cochlea.

Proceedings of National Academy Sciences of the United States of America, (2012), 109(51): 21076-21080. Pubmed


Fisher J, Nin F, Reichenbach T, Uthaiah R, Hudspeth AJ.

The special pattern of cochlear amplification.

Neuron, (2012), 76(5): 989-997. Pubmed


Nin F, Hibino H#, Murakami S, Suzuki T, Hisa Y, Kurachi Y#.

A computational model of a circulation current that controls electrochemical properties in the mammalian cochlea.

Proceedings of National Academy Sciences of the United States of America, (2012), 109(23): 9191-9196. [#: equal corresponding authors] Pubmed


Reichenbach T, Stefanovic A, Nin F, Hudspeth AJ.

Waves on Reissner’s membrane: A mechanism for the propagation of otoacoustic emissions from the cochlea.

Cell Reports, (2012), 1(4), 374-384. Pubmed


~2011~

香田徹、日比野浩、任書晃、倉智嘉久、入野俊夫、鵜木祐史、鈴木陽一、牧勝弘、津崎実、森周司、(編集者 香田・森)

日本音響学会 内耳有毛細胞機能の分子生物学的基盤とそのモデル 

音響サイエンスシリーズ3「聴覚モデル」 58-100, 2011 コロナ社, 東京(233頁)


~2010~

Hibino H, Nin F, Tsuzuki C, Kurachi Y.

How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.

Pflugers Archiv - European Journal of Physiology, (2010), 459(4): 521-533. Pubmed


Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y.

Inwardly rectifying potassium channels: their structure, function and physiological roles.

Physiological Reviews, (2010), 90(1): 291-366.  Pubmed


~2008~

Nin F*, Hibino H*, Doi K, Suzuki T, Hisa Y, Kurachi Y.

The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.

Proceedings of National Academy Sciences of the United States of America, (2008), 105(5):1751-1756. [*: equal contributors] Pubmed


~2007~

Hibino H, Kurachi Y.

Distinct detergent-resistant membrane microdomains (lipid-rafts) respectively harvest K+ and water transport systems in brain astroglia.

European Journal of Neuroscience, (2007), 26(9):2539-2555. Pubmed


~2006~

Hibino H, Kurachi Y.

Molecular and physiological bases of the K+ circulation in the mammalian inner ear.

Physiology (Bethesda), (2006), 21:336-345. Pubmed


Shibata T, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y.

Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.

American Journal of Physiology. Cell Physiology, (2006), 291(5):C1038-1048. Pubmed


~2004~

Lesage F*, Hibino H*, Hudspeth AJ.

Association of β-catenin with the α subunit of neuronal large-conductance Ca2+ activated K+ channels.

Proceedings of National Academy Sciences of the United States of America, (2004), 101(2):671-675. [*: equal contributors]


~2003~

Hibino H, Pironkova R, Onwumere O, Rousset M, Charnet P, Hudspeth AJ, Lesage F.

Direct interaction with a nuclear protein and regulation of gene silencing by a variant of the Ca2+ channel β4 subunit.

Proceedings of National Academy Sciences of the United States of America, (2003), 100(1): 307-312.


~2002~

Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F.

RIM-binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage gated Ca2+ channels.

Neuron, (2002), 34(3): 411-423.


~2000~

Hibino H, Inanobe A, Tanemoto M, Fujita A, Doi K, Kubo T, Hata Y, Takai Y, Kurachi Y.

Anchoring proteins confer G protein-sensitivity to an inward-rectifier K+ channel through GK domain.

EMBO Journal, (2000), 19(1): 78-83.


~1999~

Hibino H, Horio Y, Fuijta A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y.

Expression of an inwardly rectifying K+ channel, Kir4.1, in the satellite cells of rat cochlear ganglia.

American Journal of Physiology. Cell Physiology, (1999), 277(4): C638-C644.


~1997~

Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T, Kurachi Y.

An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4.1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential.

Journal of Neuroscience, (1997), 17(12):4711-4721.