Open-Label Randomized Multicenter Selection Study of Once Daily Antiretroviral Treatment Regimen Comparing Ritonavir-Boosted Atazanavir to Efavirenz with Fixed-Dose Abacavir and Lamivudine

Miwako Honda¹, Michiyo Ishisaka¹, Naoki Ishizuka², Satoshi Kimura³, Shinichi Oka¹ and behalf of Japanese Anti-HIV-1 QD Therapy Study Group

Abstract

Background The side-effects of anti-retroviral drugs are different between Japanese and Caucasian patients. Severe central nerve system (CNS) side-effects to efavirenz and low rate of hypersensitivity against abacavir characterize the Japanese.

Objective The objective of this study was to select a once daily regimen for further non-inferior study comparing the virological efficacy and safety of the first line once daily antiretroviral treatment regimens in the current HIV/AIDS guideline.

Methods The study design was a randomized, open label, multicenter, selection study. One arm was treated with efavirenz and the other with ritonavir-boosted atazanavir. A fixed-dose lamivudine plus abacavir were used in both arms. The primary endpoint was virologic success (viral load less than 50 copies/mL) rate at 48 weeks. Patients were followed-up to 96 weeks with safety as the secondary endpoint. Clinicaltrials.Gov (NCT 00280969) and the University hospital Medical Information Network (UMIN000000243).

Results A total of 71 participants were enrolled. Virologic success rates in both arms were similar at week 48 [efavirenz arm 28/36 (77.8%); atazanavir arm 27/35 (77.1%)], but were decreased at week 96 to 55.6% in the efavirenz arm and 68.8% in the atazanavir arm (p=0.33). At the 96-week follow-up, 52.8% of the EFV arm and 34.3% of the ATV/r arm reached total cholesterol more than 220 mg/dL and required treatment. None of the patients developed cardiovascular complications in this study by week 96.

Conclusion There was no significant difference in the efficacy of efavirenz and ritonavir-boosted atazanavir combined with lamivudine plus abacavir at 48 weeks. The evaluation of safety was extended to 96 weeks, which also showed no significant difference in both arms.

Key words: HIV, antiretroviral treatment, efavirenz, atazanavir, abacavir, lamivudine

However, their mitochondrial toxicity made long-term use difficult (4-7). Due to HLA-B*5701-related hypersensitivity, abacavir (ABC) is listed as the second line drug under the United States Department of Health and Human Services (DHHS) guidelines. However, HLA-B*5701 is quite rare among Japanese, and thus the incidence of hypersensitivity to ABC in Japanese patients is lower than that of Caucasians (8-10). Although tenofovir (TDF) is widely used as the first line drug, the dose-dependent nephrotoxicity is a major concern in Japanese because Japanese body weight is lighter than that of Caucasians (11, 12).

The present study was designed in 2006, when the combination of TDF, lamivudine (3TC) or entecavir (FTC), and EFV was the first line regimen of antiretroviral treatment (13). To explore the optimal antiretroviral combination for the best clinical outcome among Japanese HIV-1 patients (14), a selection study was designed to compare the efficacy and safety of once daily treatment with EFV or ATV/r combined with a fixed-dose ABC and 3TC (ABC/3TC).

Objective

The objective of this study was to select a once daily regimen for further non-inferior study comparing the virological efficacy and safety of the first line once daily antiretroviral treatment regimens in the current HIV/AIDS guideline.

Subjects and Methods

Study design

The study was designed as a randomized, open label, multicenter selection study, which means the superior regimen at the end point is to be selected as alternate arm to compare with the current first line regimen in the next step. Therefore, this study was not to compare superiority or non-inferiority of both arms. As the selection study, the main objective is to select a treatment regimen for further pivotal study and the secondary objective is safety. The primary endpoint was the proportion of patients in each arm who achieved virologic success (HIV-1 RNA less than 50 copies/mL in plasma) at week 48. The secondary endpoints were death, AIDS and serious non-AIDS events, non-AIDS defining cancer, treatment-related serious or grade 3 to 4 adverse events, and discontinuation of antiretroviral treatment before week 96.

The inclusion criteria of this study were those who were treatment-naïve, HIV-1 positive Japanese men with a CD4+ count ranging from 100 to 300 cell/mm³. The exclusion criteria included current active AIDS, acute retroviral syndrome and persistent active hepatitis B infection (HBs-Ag positive). Patients with a history of 3TC treatment for hepatitis B infection were also excluded. After obtaining informed consent, eligible participants were randomized into once daily 600 mg EFV or 100 mg RTV and 300 mg ATV (EFV arm vs ATV/r arm). All participants received a fixed dose of 600 mg of ABC and 300 mg 3TC (ABC/3TC).

At baseline, the demographic characteristics and a complete medical history were recorded, physical examination was performed, and various laboratory tests were obtained (CD4+ count, HIV-1 RNA, complete blood count, biochemistry, liver and renal function tests, and total cholesterol). Participants were examined at baseline, then every 4 weeks until week 96. Careful clinical examination was provided at each visit, including history taking of any adverse event, adherence to treatment, and physical examination. Furthermore, blood tests were obtained including complete blood count, biochemistry, liver and renal function tests, CD4+ count and HIV-1 RNA. When HIV-1 RNA became less than 50 copies/mL, participants were rescheduled to be seen every 4 to 12 weeks. All participants underwent clinical examination at week 48 as the primary endpoint, then every 12 weeks until week 96 as the secondary follow-up period for evaluation of safety.

The study recruitment period was started on September 1st of 2005 for 2 years. The study protocol was originally designed to follow patients for 48 weeks, however, during the study period, cardiovascular adverse events of ABC-containing regimen were reported (15, 16). Considering the importance of adherence to safety, the follow-up period was extended to 96 weeks.

Independent data and safety monitoring board reviewed virology and safety data by treatment allocation were obtained when all participants had completed 24 weeks of the study. A total of 18 academic medical institutions in Japan participated in this study. The study protocol was approved by the ethics committee of each site and was registered at Clinicaltrials.gov (NCT00280969) and the University Hospital Medical Information Network (UMIN000000243).

Statistical analyses

The estimated proportion of virologic failure, representing HIV-1 RNA of more than 50 copies/mL at 48 weeks of treatment, was 30% over one year. To choose one treatment group with a probability of 0.90, if it is superior to another treatment by >10%, if any, a sample size of 40 participants per group was necessary according to the selection design (17).

To assess differences in proportions, we used Fisher's exact test and calculated exact confidence intervals (CIs). We conducted intent-to-treat analysis and used the T test to compare the efavirenz arm and the ritonavir boosted atazanavir arm, unless the data showed skewed distribution, in which case the Wilcoxon's test was used. All analyses used a two-sided alpha of 0.05. No adjustment for each test was made for multiple comparisons due to the fact that we have several tests to compare the efficacies and safety of two groups. All analyses, unless otherwise specified, were determined a priori and were hypothesis driven. Statistical analyses were performed using SAS version 9.1.
Participants

In the study recruitment period, 71 participants were randomly assigned to two groups (36 in EFV arm and 35 in ATV/r arm). The baseline characteristics of the subjects are listed in Table 1. Among the 71 participants, 62 (87.3%) for the primary endpoint and 58 (80.6%) for the secondary end-point completed the study protocol. By week 96, 9 participants had withdrawn due to clinical events, 2 declined to continue the study for personal reasons, one died by accident for unknown reason (the cause of death according to the coroner’s report was not related to the cardiovascular system), 2 participants required treatment change (this was due to suicidal idealization in one and to skin rash in the other), one participant withdrew by own wish, one enrolled into another study, and one was transferred to another non-affiliated medical care facility.

Primary endpoint

At week 48, by intent-to-treat, missing-equals-failure analysis, 28 of 36 participants (77.8%, 95% CI: 60.9-89.9) in the EFV arm and 27 of 35 (77.1%, 95% CI: 59.9-89.9) in the ATV/r arm achieved the goal of HIV-1 RNA less than 50 copies/mL. Based on the definition of the selection study, the superiority of the superior arm does not require statistical significance (17). At week 48, 77.8% of ATV/r arm and 77.1% of EFV arm reached HIV-VL of less than 50 copies/mL. The number of participants with a baseline HIV-1 RNA level of more than 100,000 copies/mL was 5 in the EFV arm and 2 in the ATV/r arm. One participant in each arm withdrew from the study at week 4 due to skin rash. The rest of the participants achieved virologic success in the EFV arm (4 out of 4) and in ATV/r arm (1 out of 1).

Virologic success over time

Figure 1 shows the intent-to-treat analysis of participants who reached virologic success. At week 96, the rates of virologic success in the EFV arm were 55.6% (20 of 36) and 68.6% (24 of 35) in the ATV/r arm (p=0.33). The number of participants with a baseline HIV-1 RNA level of more than 100,000 copies/mL was 5 in the EFV arm and 2 in the ATV/r arm. One participant in each arm withdrew from the study at week 4 due to skin rash. The rest of the participants achieved virologic success in the EFV arm (4 out of 4) and in ATV/r arm (1 out of 1).

Results

Secondary endpoints

In the EFV arm, 7 of 36 participants did not complete the study; 5 of the 7 developed psychiatric symptoms, including suicidal idealization, insomnia and irritation, 2 developed skin rashes and the remaining 2 were lost to follow-up because they were transferred to non-affiliated hospitals. In the ATV/r arm, 6 of 35 patients could not complete the study; one died by accident for unknown reason (the cause of death according to the coroner’s report was not related to the cardiovascular system), 2 participants required treatment change (this was due to suicidal idealization in one and to skin rash in the other), one participant withdrew by own wish, one enrolled into another study, and one was transferred to another non-affiliated medical care facility.

Figure 2 shows the change of total cholesterol, liver function and total bilirubin from the baseline. At enrollment in the study, the median total cholesterol in the EFV arm was 155.5 mg/dL (range: 122-208) and in the ATV/r arm was 159.5 mg/dL (range: 112-215). The total cholesterol was not more than 220 mg/dL in any of the participants of both arms at baseline, and there was no significant difference between the two arms. During the study period, the total cholesterol increased to more than 220 mg/dL and required treatment with hypolipidemic agents in 52.8% of the EFV arm and 34.3% of the ATV/r arm. There was a significant increase in total cholesterol from the baseline in both arms (p < 0.05). There was no significant change in liver function tests during the study. New onset grade 3 hyperbilirubinemia was noted in 27 of 35 (77.1%) of the ATV/r arm but in none of the EFV arm. None of the hyperbilirubinemia in the ATV/r arm was associated with altered liver function, altered renal function, nephrolithiasis, or cholelithiasis.

Discussion

This study was designed as selection study, which means the superior regimen at the endpoint is to be selected as an alternate arm to compare with the current first line treatment in the next step. By definition of the selection study, the superior arm does not require statistical significance (17). At week 48, 77.8% of ATV/r arm and 77.1% of EFV arm reached HIV-VL of less than 50 copies/mL. Based on the definition of the selection study, the combination ABC/3TC/EFV was selected to compare the current first line treatment while the efficacy of each arm was almost even in this study.

In this clinical trial of 71 participants over a period of 96 weeks, no cardiovascular events or severe hypersensitivity reaction against ABC was observed. In this study, the efficacy of EFV combined with ABC/3TC and ATV/r combined with ABC/3TC was similar. Therefore, ABC based regimen can be selected as a safe combination to compare the efficacy of the first line combinations, such as EFV plus TDF/FTC or ATV/r plus TDF/FTC (18-20), in the next step for the best clinical benefits in Japanese patients.
In February 2008, the United States National Institution of Allergy and Infectious Disease announced that the data and safety monitoring board of ACTG 5202 recommended a modification of the study design because they found that among participants with high viral loads (100,000 or more copies/mL) at the time of screening, treatment combinations that included ABC/3TC were not as effective in controlling the virus as those of regimens containing TDF/FTC (19, 21). At that point, all of the present 71 participants were already enrolled in the study and the baseline HIV-1 RNA of 7 participants was more than 100,000 copies/mL. Of these 7 participants, 2 had already withdrawn from the study by week 4, and the rest of participants had reached HIV-1 RNA of less than 50 copies/mL. The safety monitor board made no recommendation to amend the protocol.

As a primary endpoint, 77.8% of the EFV arm and 77.1% of the ATV/r had reached virological success, however, total cholesterol in 58.1% of the EFV arm and 46.9% of the ATV/r arm increased to more than 220 mg/dL, which required treatment. Thus, the overall proportion of participants with good viral suppression and without severe adverse events or treatment modification was 39.6% for the EFV arm and 62.3% for the ATV/r arm. Considering the reasons for treatment modification, the neuro-psychiatric side effects required a regimen change in the EFV arm. Although several studies concluded that the neuro-psychiatric side effects are transient in nature, one study reported that treatment had to be changed in 16% of patients on EFV due to neuro-psychiatric side effects (22-24). Although there was no significant difference even with the small sample size, 5 out of 36 (13.9%) participants on EFV in our study required treatment change, compared with only 1 out of 35 (2.9%) of the ATV/r arm. This aspect of our study was similar to that reported in the Euro SIDA study (24). In the Swiss Cohort study, the treatment-limiting CNS adverse events was 3.8 (95% CI 2.7-5.2) per 100 person-years and it was clearly related to EFV (25). Considered together, these results emphasize the need for close observation of patients treated with EFV.

The incidence of hyperbilirubinemia in the present study was 77.1% in the ATV/r arm but none of these patients was above grade 4. Furthermore, none of the patients in this study developed liver function abnormality, altered renal function, renal stones, or cholelithiasis. As reported by Torti et al and Josephson et al, such clinical outcome can be used as a marker of adherence to ATV therapy (26, 27).

Limitations of this study include a small sample size.
Figure 2. Changes from baseline in total cholesterol, ALT and total bilirubin. ALT and total cholesterol at week 96 were compared with the baseline values. Since participants who developed hyperlipidemia were treated with lipid-lowering agents during the study period, the highest levels registered in each participant during the follow-up were collected for analysis. There were no significant differences in total cholesterol and ALT between the two arms, while hyperbilirubinemia was significantly higher in the ATV/r arm. Modification of treatment due to hyperbilirubinemia was not required in any of the patients of the ATV/r arm. In these box-and-whisker plots, the lines within the boxes represent median values; the upper and lower lines of the boxes represent the 25th and 75th percentiles, respectively; and the upper and lower bars outside the boxes represent the 90th and 10th percentiles, respectively.

Considering many studies on HIV treatment held in western countries that enrolled few Asian HIV-1 patients, it is important to collect data from Asian population. The current United States Department of Health and Human Services guidelines recommend TDF/FTC as the first line regimen, while the European AIDS Clinical Society recommends 3TC and ABC addition to TDF and FTC alone (28, 29). TDF/FTC is a known potent antiretroviral agent, however, its long-term efficacy and safety remain unclear (11, 12). Considering that the combinations of NRTI are limited, the efficacy and safety of ABC in the low HLA-B*5701 population need to be evaluated for wider treatment options for HIV-1 patients (9, 10).

Conclusion

This study was designed as a selection study to compare the virologic efficacy and treatment safety of EFV and ATV/r, both with ABC/3TC, in Japanese patients. The results showed no significant differences in efficacy between the two regimens at week 48. The evaluation of safety was extended to 96 weeks, which also showed no significant difference in both arms. The results of the present study have already been applied as the basis of a follow-up study that is...
currently being conducted in Japan to compare NRTI combinations of ABC/3TC and TDF/FTC with ATV/r as key drugs.

The authors state that they have no Conflict of Interest (COI).

Members of the Japanese Anti-HIV-1 QD Therapy Study Group: Koji Watanebe1, Tamayo Watanebe1, Yasuhisa Abe1, Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1, jun Ko Tanuma1, Kunihisa Tsukada1, Hiroyuki Gatanaga1, Katsuji Teruya1, Yoshimi Kikuchi1, Misao Takano1, Mikiko Ogata1, Mizue Saida1, Toshio Naito2, Yoshiyuki Yokomoku1, Motohiro Hamaguchi1, Keiko Ido1, Kiyonori Takada2, Toshikazu Miyagawa1, Shuzo Matsushita2, Takeyuki Sato3, Masaki Yoshida1, Takafumi Tezuka5, Yoshiya Tanabe8, Takafumi Tezuka8, Yoshiyuki Yokomaku1, Motohiro Hamaguchi1, Keiko Ido1, Kiyonori Takada2, Toshikazu Miyagawa1, Shuzo Matsushita2, Takeyuki Sato3, Masaki Yoshida1, Takafumi Tezuka5, Yoshiya Tanabe8, Isao Sato10, Mieko Yamada11, Mikio Yoshida7, Takafumi Tezuka8, Yoshiya Tanabe8, Isao Sato10, Toshikazu Honda1, Hirohisa Yazaki1, junko Takada1, Junko Takada1, Mikiko Ogata1, 10. Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1.

The authors state that they have no Conflict of Interest (COI).

Members of the Japanese Anti-HIV-1 QD Therapy Study Group: Koji Watanebe1, Tamayo Watanebe1, Yasuhisa Abe1, Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1, Jun Ko Tanuma1, Kunihisa Tsukada1, Hiroyuki Gatanaga1, Katsuji Teruya1, Yoshimi Kikuchi1, Misao Takano1, Mikiko Ogata1, Mizue Saida1, Toshio Naito2, Yoshiyuki Yokomoku1, Motohiro Hamaguchi1, Keiko Ido1, Kiyonori Takada2, Toshikazu Miyagawa1, Shuzo Matsushita2, Takeyuki Sato3, Masaki Yoshida1, Takafumi Tezuka5, Yoshiya Tanabe8, Isao Sato10, Toshikazu Honda1, Hirohisa Yazaki1, Junko Takada1, Mikiko Ogata1, 10. Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1.

The authors state that they have no Conflict of Interest (COI).

Members of the Japanese Anti-HIV-1 QD Therapy Study Group: Koji Watanebe1, Tamayo Watanebe1, Yasuhisa Abe1, Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1, Jun Ko Tanuma1, Kunihisa Tsukada1, Hiroyuki Gatanaga1, Katsuji Teruya1, Yoshimi Kikuchi1, Misao Takano1, Mikiko Ogata1, Mizue Saida1, Toshio Naito2, Yoshiyuki Yokomoku1, Motohiro Hamaguchi1, Keiko Ido1, Kiyonori Takada2, Toshikazu Miyagawa1, Shuzo Matsushita2, Takeyuki Sato3, Masaki Yoshida1, Takafumi Tezuka5, Yoshiya Tanabe8, Isao Sato10, Toshikazu Honda1, Hirohisa Yazaki1, Junko Takada1, Mikiko Ogata1, 10. Ikumi Genka1, Haruhito Honda1, Hirohisa Yazaki1.

© 2011 The Japanese Society of Internal Medicine
http://www.naika.or.jp/imindex.html