今日の治療指針

尿細管性アシドーシスとその他の尿細管疾患
成田 一衛
新潟大学大学院教授・腎・膠原病内科学

高カリウム血症
栗山 哲
東京都済生会中央病院・腎臓内科部長

提供：株式会社三和化学研究所
尿細管性アシドーシス
renal tubular acidosis (RTA) and other renal tubular diseases

成田一幸　新潟大学大学院教授・腎・糖尿病内科学

尿細管性アシドーシス

病態

体液の酸-塩基バランスは、肺と腎臓で調節・維持されている。すなわち、呼吸は二酸化炭素を排泄し、腎尿細管はより経過された重炭酸の再吸収と、主に蛋白代謝の結果生じる酸の量に相当する水素イオン（H⁺）の排泄を行う。正常では体液が酸性に傾くと、腎系球体で生まれたすべての重炭酸（HCO₃⁻）が再吸収され、同時にアンモニアイオンの尿中分泌が増加する形で水素イオン排泄が充進する。

これらの尿細管機能障害による障害代謝性アシドーシスが尿細管性アシドーシス（RTA）であり、大きく分類すると、HCO₃⁻の再吸収障害による近位尿細管障害（近位型、II型）と、尿酸性化（H⁺分泌）能障害による遠位尿細管障害（遠位型、I型）で、さらにアルドステロン作用の低下により遠位尿細管でのH⁺とK⁺の分泌が障害されるIV型に分けられる。

II型は古典型的RTAもいわれ、アシドーシス存在下でも尿pHが5.5以下にならない、腎からのNa喪失により2次性アルドステロン症を合併し、低K血症を呈する。Ca再吸収障害をきたし、高Ca血症、尿路結石（腎石灰化）、低Ca血症、歯髄化症を合併する。成人での主な原因は、シューグレン症候群、関節リウマチなどの自己免疫疾患とアルドステロンなどの薬剤である。小児では遺伝性のI型RTAが多い。

診断

診断は、アミオンギャップが正常な代謝性アシドーシスと低K血症の存在がきっかけとなる。ほかの原因（下痢など）がなければ、RTAの可能性が高い。鑑別に早朝尿のpHが有用であり、5.5以下であればII型と考えてよい。

IV型でアルドステロン作用減弱の原因が低レニンである場合は、糖尿病性腎症が多い。またアンジオテンシン変換酵素（ACE）阻害薬、アンジオテンシンII受容体拮抗薬、抗アルドステロン薬などのレニン−アンジオテンシン（RAS）阻害薬によるIV型RTAも、潜在的に多い可能性が指摘されている。

原因疾患、薬剤の除去に加えて、アシドーシスの補正とK値の是正が中心となる。

I型RTA

血中HCO₃⁻が20mEq/L未満で治療を開始する。近位型に比較して必要なHCO₃⁻は少ない。ただし、重曹1gは12mEqのHCO₃⁻とNaを含んでおり、0.7gの食塩負荷に相当するため、高血圧、心不全では注意を要する。スローケーはKClであり、高Cl血症を助長させるため適さない。

処方例　下記のいずれかを適宜用いる。
1)炭酸水素ナトリウム末 15-45g 分3
2)ウラリットU配合散 15-60g 分3
3)ウラリット配合錠 3-12錠 分3
4)グルコン酸K錠（Kとして5mEq）3-9錠 分3

II型RTA

HCO₃⁻が尿中に排泄されるため、大量のアルカリ化薬を必要とする。アシドーシス補正により低K血症が悪化することも念頭に置いて、K補充（下記処方例1または5）を併用する。血腫変換がある場合は、ビタミンD製剤（下記処方例6）または7を併用する。

処方例　下記1)-3)のいずれかを用い、必要に応じて適宜4)-7)を併用する。
1)炭酸水素ナトリウム末 6-12g 分3
2)ウラリットU配合散 3-9g 分3
3)タリット配合錠 6-15錠 分3
4)グルコン酸K錠（Kとして5mEq）3-15錠 分3
5)アスパラカリウム錠（Kとして1.8mEq）12-24錠 分3
6)カルファロールカプセル（0.25・0.5μg）1カプセル 分1回
7)ロカルトロールカプセル（0.25・0.5μg）1カプセル 分1

IV型RTA

代謝性アシドーシスと高カリウム血症の是正を行う。アルドステロン薬であるフロリーノフを使用する場合もあるが、高血圧、心不全、体液貯留をきたしやすいので注意を要する。腎機能低下例では体液貯
腎性尿崩症

腎集合管における抗利尿ホルモン（パソプレシ
ン）反応性の低下が原因である。薬剤性、特にリチ
ウムによる尿細管間質障害に伴うものが多い。遺伝
的ない腎性尿崩症としてはパソプレシ2型受容体、
AQP2水チャネル遺伝子の変異によるものが知ら
れている。口渇・多尿・脱水症状をきたす。

十分な水分補給と塩分摂取が基本となる。サイア
サイド系利尿薬により軽度の脱水傾向にして、尿球
体の過剰を減少させることにより多尿の改善をはか
る。同時にKの補給を行う。プロスタグランジン
尿の一部を阻害するNSAIDsも有効である。

Bartter症候群、Gitelman症候群

Bartter症候群はヘンレ係脈の太い上行脚において
するナトリウム再吸収にかかわる輸送体分子の遺伝的
変異が原因である。小児期に発症し、低K血症、
代謝性アルカローシス、レニン-アルドステロン系
の亢進、成長障害を呈する。Gitelman症候群は遠
位尿細管のサイサイド感受性Na-Cl共輸送体の
遺伝子変異が原因であり、低K血症、代謝性アル
カローシス、低Mg血症、低Ca血症（テタニー）を
認める。成長障害は少ない。

低K血症とアルカローシスの補正が中心となる。
アルドステロン拮抗薬（カリウム保持性利尿薬）は
時に有効であるが、体液喪失を助長することがあ
る。プロスタグランジン合成阻害薬は有効であ
るが、腎機能低下に注意を要する。テタニーに対して
Mg補充が有効であるが、下痢に注意する。

近位尿細管におけるシュシン再吸収障害により、
20-30歳代に腎結石を発症する。尿沈渣で六角形
の特徴的な結晶を認める。

十分な水分摂取が重要である。尿シュシン濃度を
絞り出さない1mM未満に保つために、
少なくとも3L以上の尿量を保つ。またシュシン溶
解度はアルカリ性で上昇するため、尿アルカリ化薬
を使用する。